Showing posts with label road. Show all posts
Showing posts with label road. Show all posts

Tuesday, March 1, 2016

How to field determination of saturation flow of Traffic

To know traffic flow,  two people are needed to carry out this study, one person needs to have a stop watch or a timer equipped device, and other to record a events with a appropriate software or a notebook computer. details such as area type, width, and grade of the lane being evaluated to be measured and recorded.

thak you need to have a good point for observation with a clear vision without any obstetrical and able to see traffic light, mark a specific point for traffic to enter, than follow below steps:
1. Timer starts the stop watch as green light and record the time
2. recorder immediately notes the last vehicle in the stopped queue and describes the timer and also notes vehicles details such as heavy and light and who turns right and left
3. timer than reads all the vehicles passing
4. timer records all the vehicles that passed and noted
5. width of the lane and slope of approach are then measured and recorded together with any unudal occurrence that might have effected the flow
6. just after the green phase is less than saturation flow, the time considered for calculating the saturation flow is theat between the time the rear axle of the car crosses the reference point t4 and the time the rear axle of the fourth car crosses the reference point tn. below equation can be used

Saturation flow = 3600/((t4-tn)/(n-4))

where n is the number of last vehicle surveyed.

field sheet for direct observation of prevailing saturation flow ratio



Saturday, April 21, 2012

what do we know about bitumen

what is bitumen? 
Bitumen or Tar is a dark black,greasy, viscous material that is a naturally-occurring organic byproduct of decomposed organic materials ,Bitumen is  the heaviest, thickest form of PETROLEUM.
How is bitumen produced?
Crude oil is to be introduced to an oil refinery, the crude oil being processed is separated into different parts on the basis with respect to their boiling range. The final bitumen product can be produced to technical specification either directly in the refining process or by blending bitumens with different physical properties.
What is the bitumen used for?
it been used widely for roads, roofs, water proofing..
Heavy duty pavings, Urban roads paving, rural roads paving, main roads paving, industrial uses.

Heavy duty paving is used in Airports, ports and railways require paving solutions that can withstand extremely heavy loads and high pavement stress. These pavements are subject to sustained loads, often in channels such as loading bays which can lead to rutting.

Industrial applications for bitumen are extremely varied; core applications include roofing, flooring and sealing on both an industrial and DIY level.


Friday, November 18, 2011

Report on how to design high way on a hilly area


Introduction

Romans was the people who started building long length roads, roads that connected to Europe, who saw the ability to move quickly as essential for both military and civil reasons. The Roman approach to road design is essentially the same as that in current use. The roads were constructed of several different layers, increasing in strength from the bottom. The lowest layer was normally rubble, intermediate layers were made of lime bound concrete and the upper layer was a flag or lime grouted stone slabs. The thickness of the layers was varied according to the local ground conditions.

            Highway designs vary widely and can range from a two-lane road without margins to a multi-lane, grade separated freeway. In law the word highway is often used as a legal term to denote any public road, ranging from freeways to dirt tracks. An interconnected set of highways can be variously referred to as a "highway system", a "highway network" or a "highway transportation system".

            This report consists of a highway which connects two highways A to B, through a declining hilly area, and this area needs to be cut and fill. Consist of a sag curve and crest curve. The minimum gradient through the road is 7%. And the first 50m is 0% and straight.



Speed parameter and route selection

 Route selection

Human beings are natural effort minimizes, notably when it involves moving around. When given the opportunity, they will always try to choose the shortest path to go from one place to another. Transportation, as an economic activity, replicates this process of minimization, notably by trying to minimize the friction of distance between locations. Shorter times and lower costs are looked upon by individuals as well as by multinational corporations. For an individual, it is often only a matter of convenience, but for a corporation it is of strategic importance as a direct monetary cost is involved.

The Road we have designed is 864 meters in length.

 Speed parameter


Speed or velocity, it measure how much of distance a particle or vehicle moves in a period of time. In human there are three thing which influence driver choice of speed; Personal; which means how tired he she is or how occupies he/she is,  Vehicle; the type of vehicle he/she is driving, External; this is things outside the vehicle, like how the road is, how the weather is.
The design speed of this road is 80 Km/H from A to B of 864 meters.


 Design calculations

 Horizontal curvature and alignment

Design speed of road, V =  80 Km/h,                         e = 0.07 Max,              f=0.26
Rmin     =                 V2              .           
                   127 ( emax + fmax)              
Rmin     =                 802              .           
                   127 ( 0.07 + 0.26)                       
Rmin     =       157.5 M



Rate of rotation
   LSD    =       (n.e)     x    VD


                     0.025         3.6
  LSD    =       (0.03 x 0.06)     x    80


                          0.025                  3.6
       LSD    =       80 M




Plan transition length
       LT      =          2/3 x LSD


       LT      =          2/3 x 80


       LT      =          53 M




Chainage at TP leading
       ChTP1             =          130+81 = 160 Tan 52


            =          132.97 M
       ChTP1             =          132.97+145  = 277.97


            =          278 M

Vertical Alignment

Crest curve

A         =          0 – (-7)
            =          7
K = 24,            V =  80 Km/h
Min crest =      7 x 24 = 168 m
Ha       =          912 + 0                        =912
Hb       =          912 – 0.07x 168/2       = 906.12
Hc       =          (912 +906.12)/2          = 909.06
Hd       =          (909.6 + 912)/2           = 910.53
Cha      =          140 – 168/2                 =56 m
Chb     =          140+168/2                   =224 m



   Hp     =          Ha +[(p/100) X] + [ (-A/200L) X2]


          =          912 + 0 - 0.0033


           =          911.99


Table 1 ; Crest curve in every 20 m intervals
Chainge
x
ha
(p/100)
x
A/200L
x2
Hr
56
4
912
0
4
-0.00021
16
912.00
60
24
912
0
24
-0.00021
576
911.88
80
44
912
0
44
-0.00021
1936
911.60
100
64
912
0
64
-0.00021
4096
911.15
120
84
912
0
84
-0.00021
7056
910.53
ok
140
104
912
0
104
-0.00021
10816
909.75
160
124
912
0
124
-0.00021
15376
908.80
180
144
912
0
144
-0.00021
20736
907.68
200
164
912
0
164
-0.00021
26896
906.40
ok

sag curve

A         =          -7 – (3)
            =          -10
sag       =          200 m adopt
Ha       =          865.7  + 0.07x100       = 872.7
Hb       =          865.7  + 0.03x 100      = 868.7
Hc       =          (872.7  +868.7)/2        = 869.92
Hd       =          (869.92+ 865.7 )/2      = 867.92
Cha      =          768 – 200/2                 =668 m
Chb     =          768+200/2                   =868 m
 Chd   =          768



Table 2 ; Crest curve in every 20 m intervals
Chainge
x
ha
(p/100)
x
A/200L
x2
Hr
668
20
872.7
0.07
20
-0.00025
400
871.40
688
40
872.7
0.07
40
-0.00025
1600
870.30
708
60
872.7
0.07
60
-0.00025
3600
869.40
728
80
872.7
0.07
80
-0.00025
6400
868.70
748
100
872.7
0.07
100
-0.00025
10000
868.20
768
120
872.7
0.07
120
-0.00025
14400
867.90
ok
788
140
872.7
0.07
140
-0.00025
19600
867.80
808
160
872.7
0.07
160
-0.00025
25600
867.90
828
180
872.7
0.07
180
-0.00025
32400
868.20
848
200
872.7
0.07
200
-0.00025
40000
868.70
ok
Earth work volume calculation 


From the graph there is around 74 fill in section and 3 cut section.
Cut and fill ratio         =     1 : 24.6

Volume of fill is;
=          74 – 3  = 71 nos
=          71 x 12 x 20
=          17,040 M3 of soil for fill

Volume of cut is;
=          3nos
=          3 x 12 x 20
=          720 Mof soil to be cut

 Reference

[1] Traffic and Highway engineering, Nicholas J garber, lester A Hoel, 3rd edition.
[2] Highway Engineering, Martin Rogers
[3] http://people.hofstra.edu/geotrans/eng/ch2en/meth2en/ch2m2en_2ed.html